Tag Archives: HIIT

Resistance Training is better than Aerobic Training for Weight Loss. Or is it?

 

By Dr. Deepak Hiwale. Leave it to the social media PhDs to pontificate on and on about the superiority of resistance training for weight loss. I recently saw a pyramid that touted sleep management over doing actual exercise (i.e., cardio) as better for you regarding fat loss. Now that’s a first. Thus,  we know resistance training is superior to aerobic training (aka cardio, endurance training, etc). And most fitness experts seem to agree. But is it really?500488709

Delve a bit deeper into science and you realise that evidence for RT being a better weight-loss tool, is not all that strong and AET (and in some individuals, high-intensity, interval training – HIIT) may be better! Interesting to note here that while RT may have its own set of metabolic benefits, AET may still be better than RT at reducing risks of metabolic disorders too.

Why are you told that resistance training will cause weight loss?

It is a common (and, somewhat dogmatic) belief amongst exercisers, exercise-fitness professionals and clinicians that resistance or strength training (ST), in addition to improving your lean body mass (LBM), is the best way to burn more calories and therefore, lose weight as well.

And, this is how – they’ll tell ya – it (apparently) works:

  • RT or ST has the potential to increase your LBM, also called fat-free mass (FFM), including muscle mass – there is enough evidence to support this 1–4
  • Skeletal muscle is the most metabolically active tissue in the body – well, no! Its more complicated than that (see below)
  • Increase in muscle mass translates into more calories burned throughout the day, even when resting – evidence equivocal (see below)
  • Therefore, more muscle you carry, more is your resting metabolic rate (RMR) and more calories you burn throughout the day (increase in total daily energy expenditure (TDEE)
  • Increase in TDEE (with or without a nutritional calorific deficit) leads to weight loss

What’s wrong with what they tell you?

While all that sounds good in theory, everything isn’t as cut and dry as they make it out to be:

  1. Skeletal muscle isn’t the most metabolically active of the tissues in the body – heart and the kidneys are! These organs have the highest metabolic rates, 2x those of the liver and the brain and a whopping 35x that of the skeletal muscle! 5Having said that though, of all the tissues, skeletal muscle may indeed contribute significantly towards energy expended during the day. This is so because skeletal muscle wins on account of sheer mass – it weighs much more than all these other organs mentioned.Sprinter Schippers 400 x 400
  2. Increased muscle mass does not bump up your metabolism to the point that it will burn additional calories which will translate into weight loss:
  • Previous studies examining the effects of RT on RMR have reported mixed results – both in men and women 2,3,6–15
  • Only older men (and not older women or younger men and women) show an elevated RMR in response to RT; most studies support this finding 2,3,6,10,11,13
  • In younger men & women and in older women, there seems to be a consistent lack of change in RMR in response to RT; the association between RT and rise in RMR all but disappears 7,8,12,14,15
  • Recent studies have shown mixed results too – with some showing an increase in RMR in response to RT; 16,17others, a no change. 18,19 Interestingly, one study showed a fall in RMR in response to ‘dieting’, which could not be stopped by resistance training 20
  • A rare study that compared the effects of RT on RMR across various age groups, reported no changes in RMR in either young or older individuals! 12
  • A study by Lemmer et al. 17reported some curious findings:
  1. RMR in response to RT is more affected by gender than age; men are more likely to benefit from RT than women
  2. When younger and older men were pooled together, a significant increase in RMR with RT was shown
  3. Younger and older women showed no effect on RMR in response to RT

In a nutshell, RT does not alter energy expenditure significantly outside of the exercise session and especially in younger men or in women across all age groups.

Weight / fat loss with resistance training

Misinterpretation of current ACSM and other guidelines 21–23 have led to the dogmatic belief amongst exercise-fitness professionals that RT has conclusively been proven to reduce body weight. In reality, a closer look at existing literature suggests that the evidence for RT as an effective tool for weight-loss remains equivocal, at best. 24–29

  • The ACSM guidelines on ‘strategies for weight loss and prevention of weight regain in adults’ states that, ‘research evidence does not support RT as effective for weight loss’ and points HMB chickout that ‘the effects of RT for prevention of weight gain (after initial weight loss) are largely unknown’ 21
  • While few studies have observed some reduction in body fat with RT,30–32others have found no effect on body fat % even when the intervention was continued for 12-52 weeks 33–35
  • Interestingly, one study found a gender-based differential effect of RT on body fat – reduction in body fat was observed in the group containing younger and older men pooled together but not in women. 17This finding is not dissimilar to the findings from other studies that RT enhances RMR only in older men 7,8,12,14,15

There is, however, a need to mention here that although RT does not seem to contribute significantly to calorie expenditure outside of the exercise session or fat loss, it is associated with numerous health benefits – increased lean mass, improved work capacity and decreased chronic disease risk factors (sarcopenia), to name a few. 36,37

High-intensity, Interval Training

HIIT, they will tell you, will not only burn calories during the workout but also increase your calorie expenditure through the rest of the day (through increased excess post-exercise oxygen consumption – EPOC – a fancy term the whole town and his wife seems to be using these days!). And, that will translate into weight loss!

EPOC or oxygen debt, as it used to be called previously, is the mechanism by which the body makes up for the oxygen deficit created during an exercise session by increasing oxygen consumption well after cessation of exercise – breathlessness you experience for a few minutes after you’ve climbed to the top of the stairs is an example.rowing

In reality, increase in EPOC after an HIIT session is modest (only 6-15% of total energy expenditure). EPOC alone, therefore, may be insignificant for causing weight loss. 38

Having said that, a study published in 2002 in the European Journal of Applied Physiology utilising circuit type of resistance training with relatively heavy weights and short rest periods generated EPOC which increased resting metabolic rate by 21% and 19% for 24 and 48 hours post- workout. As the authors content, if these numbers are applied to a typical 180-pound individual, it would amount to 773 calories expended over 2 days after cessation of the exercise session! 39 So, HIIT does seem to have benefits.

However, whereas in overweight-obese / untrained individuals, it is difficult to achieve the high-intensity and the duration required to elicit a high enough EPOC to be of any consequence for weight loss. And, prescription of such complex methods of training – needing highly skilled HIIT1movements – is likely to reduce exercise enjoyment and long-term adherence in novice and out-of-shape individuals, in seasoned exercisers, HIIT and EPOC may be an effective way to bump up calorie burning and improve body composition.

Aerobic endurance training

Also called ‘low-intensity, steady state’ (LISS) cardio or ‘long, slow distance’ (LSD) training, aerobic endurance training (AET) may just be the best tool out there, for most people when it comes to losing weight.

Researchers from the University of Pittsburgh, Pennsylvania, conducted a study comparing RT with AET in young women 40. The results will come as a surprise (for most)! Apparently, not only is AET better than RT at reducing body fat % but it also wins hands down when it comes to:

  • improving cardiorespiratory fitness
  • improving insulin sensitivity
  • reducing visceral adipose tissue (fat surrounding organs)
  • reducing abdominal fat, and
  • reducing inter-muscular (within muscle) fat

Other studies have also supported the idea that AET may be better at reducing visceral and Cycling_20-2abdominal fat, not to mention, the overall body fat%.

  • A study published in Dec, 2012 reported that while AET and combined AET/RT exercise programs caused more weight loss than RT alone, AET/RT and RT resulted in increased lean mass. However, although requiring a double time commitment over AET alone, a combined AET/RT exercise program did not result in ‘significantly more weight loss over AET alone’ 41
  • Another study published in the American Journal of Physiology – Endocrinology and Metabolism concluded that AET caused significant reductions in:
    1. Whole body fat including subcutaneous abdominal fat, visceral adipose tissue (VAT – fat around the organs) and liver fat content
    2. plasma liver enzymes, esp. alanine aminotransferase (enzyme reflecting the amount of liver damage), and
    3. HOMA (Homeostasis Model Assessment – a measure of the level of your steady state pancreatic beta cell function (%B) and insulin sensitivity (%S)

Resistance training, on the other hand, failed to significantly affect these variable 42

  • Owing to results like these, it shouldn’t come as a surprise that AET is recommended to be central to exercise programs for reducing VAT and its metabolic adverse effects – obesity and other metabolic disorders 43
  • Even in the absence of significant weight loss, AET may improve metabolic disease parameters, esp. in patients of type 2 diabetes 44

Women and aerobic endurance training

Why do women prefer conventional AET?

As if the results of the studies mentioned above didn’t come as shocking enough for you, here’s something that is even more thought-provoking – something that might answer your question of why women tend to favour treadmills over free-weights!

It appears that AET is more effective in (overweight and obese, both young and older) women than in men 40. Furthermore, there is some evidence to suggest that women enjoy AET more than RT 45; the opposite seems to be true with young men – they seem to enjoy RT more (now 6a013488ee9d3e970c01543533d8ce970ccome on, do we even need any proof of that?!).

My hunch is that is that women find AET more enjoyable because it is more effective for them! Not surprisingly then – call it nature or subconscious minds at work – there seems to be a very valid reason why you see more women heading to the treadmill rather than the ‘free-weights section’!

RT or AET and Metabolic Disease

Abdominal obesity is a prominent risk factor for metabolic disease (type II diabetes, cardiovascular disease, etc.). 46 Results from the STRRIDE study suggest that AET was associated with significant reductions in VAT, a measure of abdominal obesity. 47,48

Although in comparison to AET, RT does not cause much difference in measures of fat tissue, it does cause a significant reduction in CRP (a parameter, high levels of which, suggests a low-grade, chronic systemic inflammation with the potential to develop into cardiovascular disease and diabetes type II). 49 Important to note here that an inverse association seems to exist between aerobic fitness and chronic systemic inflammation.50,51  Sedentariness increases inflammatory markers. 49

Conflicting data exists over the superiority of AET over RT for the reduction of metabolic disease risk parameters (HbA1c, blood lipids including triglycerides and LDL particle size). Having said, regular and long-term, moderate intensity exercise seems to increase HDL and lower triglycerides, even in the absence of weight loss. 52

Although RT has benefits of its own, a combination of AET and RT exercise regimen – although more effective at reducing the risk of metabolic disease than RT alone – were not significantly different from AET alone 53. This effectively suggests that the RT component may be contributing precious little (if at all) to the disease prevention effect of an AET-RT exercise program.

A NEAT solution to the problem

Of all the components of human daily energy expenditure (BMR, thermic energy of food, exercise-related activity thermogenesis (EAT) and non-exercise activity thermogenesis (NEAT)), NEAT is the most modifiable parameter and is capable of significantly pushing up your total daily energy expenditure (TDEE) than exercise sessions (!), even in intense exercisers 54. Even very low-level physical activities like mastication (chewing) and fidgeting can increase energy girlsprintexpenditure by 20-40% above your resting metabolic rate! NEAT includes energy expenditure of walking, talking, going for your job, sitting, toe-tapping, shopping, dancing, etc. It should be apparent that this component (i.e., NEAT) has zero resemblance to resistance training.

Comment

It is likely that AET (treadmill runs) may be more effective than RT – especially in overweight women – for reducing body fat and preventing metabolic diseases. Also,

  • RT seems to contribute very little to weight-loss
  • RT doesn’t seem to contribute towards (metabolic) disease prevention-management as much as AET does
  • Combination of RT and AET does not seem to afford any more benefits over AET alone when weight loss or metabolic disease management is the prime goal

Conclusion

Looking at much of the evidence, the question that begs to be answered is: ‘what if we were all wrong about our weight-loss exercise strategies and indeed, about our obsession with the fat-burning abilities of resistance training? And, what if those women on treadmills were right all along?!

I reckon, it’s time we stopped ridiculing (or even downright laughing at) those men / women who hit the treadmill every single time they’re at the gym.

Take home message

  • Resistance training may be contributing precious little towards calorie burning outside of exercise sessions and eventual weight loss! Furthermore, gains in RMR subsequent to gains in lean body mass are miniscule.
  • HIIT in overweight – obese and untrained individuals HIIT may not be ideal; in seasoned exercisers, may lead to significant calorie expenditure both in and outside of the exercise sessions
  • Aerobic Endurance training seems to be the best tool for total body weight and fat reduction – needs to a be an integral part of almost every weight-loss program
  • Aerobic Endurance training wins hands down for metabolic disease management
  • Women do not seem to respond as well to resistance training, aerobic endurance training and HIIT may be better options
  • NEAT can contribute significantly to total daily energy expenditure – staying active through the day can really bump your calorific expenditure (probably more so than RT or AET)

About the Author: Facebook link: https://www.facebook.com/pg/drdeepakhiwale/about/?ref=page_internal

‘Conditioning Clinic’ is a brain child of Dr Deepak S Hiwale. Better known internationally as ‘The Fitness Doc, Dr Hiwale prefers and recommends a preventive approach to deal with metabolic diseases. He specializes in disease reversal – obesity, diabetes, cardiovascular diseases, you name it! He is also a strength and conditioning consultant and currently has club and elite cricketers as his clients!

References

  1. Byrne HK, Wilmore JH. The relationship of mode and intensity of training on resting metabolic rate in women. Int J Sport Nutr Exerc Metab. 2001;11(1):1-14. doi:10.1017/CBO9781107415324.004.
  2. Campbell WW, Crim MC, Young VR, Evans WJ. Increased energy requirements and changes in body composition with resistance training in older adults. Am J Clin Nutr. 1994;60(2):167-175. http://www.ncbi.nlm.nih.gov/pubmed/8030593. Accessed October 12, 2016.
  3. Poehlman ET, Toth MJ, Ades PA, Calles-Escandon J. Gender differences in resting metabolic rate and noradrenaline kinetics in older individuals. Eur J Clin Invest. 1997;27(1):23-28. http://www.ncbi.nlm.nih.gov/pubmed/9041373. Accessed October 11, 2016.
  4. Washburn RA, Donnelly JE, Smith BK, Sullivan DK, Marquis J, Herrmann SD. Resistance training volume, energy balance and weight management: rationale and design of a 9 month trial. Contemp Clin Trials. 2012;33(4):749-758. doi:10.1016/j.cct.2012.03.002.
  5. Wang Z, Ying Z, Bosy-Westphal A, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr. 2010;92(6):1369-1377. doi:10.3945/ajcn.2010.29885.
  6. Ballor DL, Harvey-Berino JR, Ades PA, Cryan J, Calles-Escandon J. Contrasting effects of resistance and aerobic training on body composition and metabolism after diet-induced weight loss. Metabolism. 1996;45(2):179-183. http://www.ncbi.nlm.nih.gov/pubmed/8596486. Accessed October 12, 2016.
  7. Broeder CE, Burrhus KA, Svanevik LS, Wilmore JH. The effects of either high-intensity resistance or endurance training on resting metabolic rate. Am J Clin Nutr. 1992;55(4):802-810. http://www.ncbi.nlm.nih.gov/pubmed/1550062. Accessed October 12, 2016.
  8. Cullinen K, Caldwell M. Weight training increases fat-free mass and strength in untrained young women. J Am Diet Assoc. 1998;98(4):414-418. doi:10.1016/S0002-8223(98)00094-7.
  9. Pratley R, Nicklas B, Rubin M, et al. Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. J Appl Physiol. 1994;76(1):133-137. http://www.ncbi.nlm.nih.gov/pubmed/8175496. Accessed October 12, 2016.
  10. Ryan AS, Pratley RE, Elahi D, Goldberg AP. Resistive training increases fat-free mass and maintains RMR despite weight loss in postmenopausal women. J Appl Physiol. 1995;79(3):818-823. http://www.ncbi.nlm.nih.gov/pubmed/8567523. Accessed October 12, 2016.
  11. Taaffe DR, Pruitt L, Reim J, Butterfield G, Marcus R. Effect of sustained resistance training on basal metabolic rate in older women. J Am Geriatr Soc. 1995;43(5):465-471. http://www.ncbi.nlm.nih.gov/pubmed/7730525. Accessed October 12, 2016.
  12. Rall LC, Meydani SN, Kehayias JJ, Dawson-Hughes B, Roubenoff R. The effect of progressive resistance training in rheumatoid arthritis. Increased strength without changes in energy balance or body composition. Arthritis Rheum. 1996;39(3):415-426. http://www.ncbi.nlm.nih.gov/pubmed/8607890. Accessed October 12, 2016.
  13. Treuth MS, Hunter GR, Weinsier RL, Kell SH. Energy expenditure and substrate utilization in older women after strength training: 24-h calorimeter results. J Appl Physiol. 1995;78(6):2140-2146. http://www.ncbi.nlm.nih.gov/pubmed/7665410. Accessed October 12, 2016.
  14. Van Etten LM, Westerterp KR, Verstappen FT. Effect of weight-training on energy expenditure and substrate utilization during sleep. Med Sci Sports Exerc. 1995;27(2):188-193. http://www.ncbi.nlm.nih.gov/pubmed/7723641. Accessed October 12, 2016.
  15. Van Etten LM, Westerterp KR, Verstappen FT, Boon BJ, Saris WH. Effect of an 18-wk weight-training program on energy expenditure and physical activity. J Appl Physiol. 1997;82(1):298-304. http://www.ncbi.nlm.nih.gov/pubmed/9029230. Accessed October 12, 2016.
  16. Kirk EP, Donnelly JE, Smith BK, et al. Minimal resistance training improves daily energy expenditure and fat oxidation. Med Sci Sports Exerc. 2009;41(5):1122-1129. doi:10.1249/MSS.0b013e318193c64e.
  17. Lemmer JT, Ivey FM, Ryan AS, et al. Effect of strength training on resting metabolic rate and physical activity: age and gender comparisons. Med Sci Sports Exerc. 2001;33(4):532-541. http://www.ncbi.nlm.nih.gov/pubmed/11283427. Accessed October 11, 2016.
  18. Hunter GR, Byrne NM, Sirikul B, et al. Resistance training conserves fat-free mass and resting energy expenditure following weight loss. Obesity (Silver Spring). 2008;16(5):1045-1051. doi:10.1038/oby.2008.38.
  19. Meckling KA, Sherfey R. Randomized Trial of Hypocaloric, High-Protein Diet on Body Compo, Resting Metabolic Rate – meckling2007.pdf. Vol 32.; 2007:743-752. doi:10.1139/H07-059.
  20. Geliebter A, Maher MM, Gerace L, Gutin B, Heymsfield SB, Hashim SA. Effects of strength or aerobic training on body composition, resting metabolic rate, and peak oxygen consumption in obese dieting subjects. Am J Clin Nutr. 1997;66(3):557-563. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9280173.
  21. Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459-471. doi:10.1249/MSS.0b013e3181949333.
  22. Pollock ML, Franklin BA, Balady GJ, et al. Resistance Exercise in Individuals With and Without Cardiovascular Disease. Circulation. 2000;101(7).
  23. Williams MA, Haskell WL, Ades PA, et al. Resistance Exercise in Individuals With and Without Cardiovascular Disease: 2007 Update. Circulation. 2007;116(5).
  24. Aldana SG, Greenlaw RL, Diehl HA, et al. Effects of an intensive diet and physical activity modification program on the health risks of adults. J Am Diet Assoc. 2005;105(3):371-381. doi:10.1016/j.jada.2004.12.007.
  25. Andersen RE, Wadden TA, Bartlett SJ, Zemel B, Verde TJ, Franckowiak SC. Effects of lifestyle activity vs structured aerobic exercise in obese women: a randomized trial. JAMA. 1999;281(4):335-340. http://www.ncbi.nlm.nih.gov/pubmed/9929086. Accessed October 11, 2016.
  26. Bravata DM, Smith-Spangler C, Sundaram V, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296-2304. doi:10.1001/jama.298.19.2296.
  27. Curioni CC, Lourenço PM. Long-term weight loss after diet and exercise: a systematic review. Int J Obes (Lond). 2005;29(10):1168-1174. doi:10.1038/sj.ijo.0803015.
  28. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320-328. http://www.ncbi.nlm.nih.gov/pubmed/1386186. Accessed October 11, 2016.
  29. Delecluse C, Colman V, Roelants M, et al. Exercise programs for older men: mode and intensity to induce the highest possible health-related benefits. Prev Med (Baltim). 2004;39(4):823-833. doi:10.1016/j.ypmed.2004.03.023.
  30. Ferrara CM, Goldberg AP, Ortmeyer HK, Ryan AS. Effects of aerobic and resistive exercise training on glucose disposal and skeletal muscle metabolism in older men. J Gerontol A Biol Sci Med Sci. 2006;61(5):480-487. http://www.ncbi.nlm.nih.gov/pubmed/16720745. Accessed October 11, 2016.
  31. Olson TP, Dengel DR, Leon AS, Schmitz KH. Changes in inflammatory biomarkers following one-year of moderate resistance training in overweight women. Int J Obes (Lond). 2007;31(6):996-1003. doi:10.1038/sj.ijo.0803534.
  32. Polak J, Moro C, Klimcakova E, et al. Dynamic strength training improves insulin sensitivity and functional balance between adrenergic alpha 2A and beta pathways in subcutaneous adipose tissue of obese subjects. Diabetologia. 2005;48(12):2631-2640. doi:10.1007/s00125-005-0003-8.
  33. Hunter GR, Wetzstein CJ, Fields DA, Brown A, Bamman MM. Resistance training increases total energy expenditure and free-living physical activity in older adults. J Appl Physiol. 2000;89(3):977-984. http://www.ncbi.nlm.nih.gov/pubmed/10956341. Accessed October 11, 2016.
  34. Hunter GR, Bryan DR, Wetzstein CJ, Zuckerman PA, Bamman MM. Resistance training and intra-abdominal adipose tissue in older men and women. Med Sci Sports Exerc. 2002;34(6):1023-1028. http://www.ncbi.nlm.nih.gov/pubmed/12048332. Accessed October 11, 2016.
  35. Schmitz KH, Jensen MD, Kugler KC, Jeffery RW, Leon AS. Strength training for obesity prevention in midlife women. Int J Obes Relat Metab Disord. 2003;27(3):326-333. doi:10.1038/sj.ijo.0802198.
  36. Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 1988;64(3):1038-1044. http://www.ncbi.nlm.nih.gov/pubmed/3366726. Accessed October 11, 2016.
  37. Hurley BF, Redmond RA, Pratley RE, Treuth MS, Rogers MA, Goldberg AP. Effects of strength training on muscle hypertrophy and muscle cell disruption in older men. Int J Sports Med. 1995;16(6):378-384. doi:10.1055/s-2007-973024.
  38. LaForgia J, Withers RT, Gore CJ. Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. J Sports Sci. 2006;24(12):1247-1264. doi:10.1080/02640410600552064.
  39. Schuenke M, Mikat R, McBride J. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. Eur J Appl Physiol. 2002;86(5):411-417. doi:10.1007/s00421-001-0568-y.
  40. Lee S, Deldin AR, White D, et al. Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Physiol Endocrinol Metab. 2013;305(10):E1222-9. doi:10.1152/ajpendo.00285.2013.
  41. Willis LH, Slentz CA, Bateman LA, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113(12):1831-1837. doi:10.1152/japplphysiol.01370.2011.
  42. Slentz CA, Bateman LA, Willis LH, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metab. 2011;301(5):E1033-9. doi:10.1152/ajpendo.00291.2011.
  43. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68-91. doi:10.1111/j.1467-789X.2011.00931.x.
  44. Kadoglou NPE, Iliadis F, Angelopoulou N, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil. 2007;14(6):837-843. doi:10.1097/HJR.0b013e3282efaf50.
  45. Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, Arslanian S. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. Diabetes. 2012;61(11):2787-2795. doi:10.2337/db12-0214.
  46. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469-480. doi:10.1111/j.1464-5491.2006.01858.x.
  47. Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2013;1281:141-159. doi:10.1111/j.1749-6632.2012.06785.x.
  48. Slentz CA, Aiken LB, Houmard JA, et al. Inactivity, exercise, and visceral fat. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol. 2005;99(4).
  49. Donges CE, Duffield R, Drinkwater EJ. Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc. 2010;42(2):304-313. doi:10.1249/MSS.0b013e3181b117ca.
  50. Aronson D, Sheikh-Ahmad M, Avizohar O, et al. C-Reactive protein is inversely related to physical fitness in middle-aged subjects. Atherosclerosis. 2004;176(1):173-179. doi:10.1016/j.atherosclerosis.2004.04.025.
  51. Panagiotakos DB, Pitsavos C, Chrysohoou C, Kavouras S, Stefanadis C, ATTICA Study. The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Prev Med (Baltim). 2005;40(4):432-437. doi:10.1016/j.ypmed.2004.07.010.
  52. Carroll S, Dudfield M. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med. 2004;34(6):371-418. http://www.ncbi.nlm.nih.gov/pubmed/15157122. Accessed October 18, 2016.
  53. Bateman LA, Slentz CA, Willis LH, et al. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise – STRRIDE-AT/RT). Am J Cardiol. 2011;108(6):838-844. doi:10.1016/j.amjcard.2011.04.037.
  54. Levine JA. NEAT – Levine.pdf. Vol 62.; 2004:S82-97. http://www.ncbi.nlm.nih.gov/pubmed/15387473. Accessed October 16, 2016.

 

HIIT vs LISS – A Better Way to Lose Fat?

by Jose Antonio PhD FISSN – First let’s get the acronyms out of the way.  HIIT stands for Helga paddling SUPhigh-intensity interval training; LISS stands for low intensity steady state cardio.  HIIT is sometimes abbreviated HIT.  One form of training is hard and painful (HIIT) but doesn’t last as long whereas the other is not quite so painful (depending on how long you do it) but takes a longer amount of time.  Is one better than the other for losing fat?

I’ve always found this question a bit odd.  It’s like asking which wheel of the bicycle is more important. The front or the back one?  Uhhhh…they’re both important.

Now before I give you the punch line, what’s the data say?  With so many HIIT fanatics out there, one would think that doing LISS is a total waste of time.  First of all, let’s change the definition for a second.  I instead would call it SSC (stands for steady-state cardio).  Why?  Because there is this misguided impression that SSC has to be low intensity.  Try training with a collegiate distance runner on their ‘easy’ days.  SSC in that case could be a sub-6 min per mile pace for several miles.  You think that’s easy?  Low intensity?  Bwwaaaaah….You’re a fool if you think that’s easy.

So part of the answering the debate of SSC (LISS) vs HIIT is one of redefining SSC.  SSC can be quite difficult and painful.  If it is not, then you’re a jolly jogger and not a runner.  Or a jolly biker, paddler, swimmer, etc. You get the picture. :-)

What’s the data say on SSC?

Let’s check out a few studies.   A long-term supervised aerobic exercise training program was administered to 41 obese children (21 boys, 20 girls; 11 years old). The 2-year training program was performed during the daily school life. Lean body mass increased throughout the 2 year study while the total body weight decreased; the weight loss is attributed to a ultraendurancedecrease in fat.(1)  What?  You can lose fat doing SSC? :-)

What if we directly compared high intensity interval training (HIIT) versus continuous aerobic exercise training (CONT)?  In 38 previously inactive overweight adults there was a significant reduction in android fat percentage in CONT but not HIIT. Wait.  I thought HIIT was soooo much better?  The authors stated that “HIIT may be advocated as a time-efficient strategy for eliciting comparable fitness benefits to traditional continuous exercise in inactive, overweight adults. However, in this population HIIT does not confer the same benefit to body fat levels as continuous exercise training.(2)”  Furthermore, aerobic exercise is an effective approach to reduce visceral fat besides in overweight male CKD patients.(3)

Certainly other studies confirm the benefits of traditional aerobic (i.e. SSC) training.  Two months of aerobic cycling training improves body composition in young women.(4)  Also, daily moderate intensity aerobic exercise is effective at reducing abdominal fat mass, while high intensity exercise improves cardiopulmonary function.(5)

HIIT better?HIIT1

First of all, let’s get one thing clear.  HIIT is not a new way of training.  You can go back 70 years ago and find that famed distance runner, Emil Zatopek, was one of the first to utilize the interval training method.  HIIT has been used by endurance athletes for decades.  I find it somewhat amusing that folks in the ‘fitness industry’ feel like they’ve discovered some novel form of training.  It’s the greatest thing ever some exclaim.  Better than sliced bread, the zipper, and penicillin combined!  So what’s the deal with HIIT?  Does it burn fat fast?

Uh yeah.

You can do both, darling.In a recent study, HIIT was found to be more effective than SSC.  The HIIT folks are saying “See, I told you so!”   In this study, 54 people with intellectual disabilities (not your typical sample) were trained via: sprint interval training (n = 17), continuous aerobic training (n = 15) or control (n = 14). “Compared with continuous aerobic training, sprint interval training seems to result in better outcome.(6)”  Also, short-term low-volume HIT is a time-efficient strategy to improve body composition and muscle oxidative capacity in overweight/obese women.(7)  In a fairly large study, 60 female university students were randomly assigned to either a HIIT group, the moderate intensity continuous training (MICT) group or a non-training control group.  After 12 weeks of training, both type of training produced significant improvements in the subjects’ body composition, left ventricular ejection fraction, heart rate at rest, maximal oxygen uptake and ventilatory threshold. However, the HIIT group achieved better results than those in the MICT group, as it was evaluated by the amount of the effect size.(8)

I think the HIIT vs SSC (or LISS) debate is somewhat misguided.  If your goal is losing body fat and you don’t really give a shit about anything else, then by all means, you should do both.  They BOTH work.  Very few if any studies are performed on highly trained individuals.  So what we are left with is a smattering of studies on fat and/or out-of-shape people.  Heck, in that population, pretty much anything will work.  But if you’re a fitness maniac, then it’s a bit more difficult to lose fat to begin with.

But honestly, changing your diet is probably as important (if not more important) then either.  Doing HIIT is a great time-efficient way to train.  Doing HIIT too often will likely result in some degree of overtraining.  Let’s face it; to do HIIT correctly requires a high pain threshold.  It should hurt.  It should hurt a lot in fact!  SSC is good in that you can do it quite frequently without too great a risk of injury and/or overtraining.

So how much of each can or should you do?

Dr. Stephen Seiler wrote a great article on interval training and long slow distance (SSC). http://www.sportsci.org/2009/ss.htm

Think of the 80:20 rule.  Elite endurance athletes perform 80% or more of their training as SSC (i.e. intensities below the lactate threshold) with the remaining 20% being interval training (i.e. HIIT).  It is intriguing in that when you look across a wide variety of endurance sports (i.e. cycling, running, rowing, cross-country skiing, etc), they all follow this distribution of training.  Coaches (and athletes) have somehow figured out that if HIIT exceeds more than 20% of your training volume, it would likely have a diminishing or detrimental effect.  Thus, if we were to borrow from the lessons of elite endurance athletes, I’d suggest that you limit your HIIT to no more than twice per week.  Any other cardio you do beyond that should be SSC.

main-paddle8

Also, keep in mind that ‘cardio’ (i.e. SSC) doesn’t have to be that boring shit you see at the gym.  Does anyone actually like riding a stationary bike for an hour?  Doing the stairstepper?  Get your butt outside and try some non-traditional ‘cardio’ work.  You’ll be having so much fun that you won’t think twice about the HIIT vs SSC (or LISS) debate.

References

1.            Sasaki J, Shindo M, Tanaka H, Ando M, Arakawa K. A long-term aerobic exercise program decreases the obesity index and increases the high density lipoprotein cholesterol concentration in obese children. Int J Obes 1987;11(4):339-45.

2.            Keating SE, Machan EA, O’Connor HT, Gerofi JA, Sainsbury A, Caterson ID, et al. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J Obes 2014;2014:834865.

3.            Baria F, Kamimura MA, Aoike DT, Ammirati A, Leister Rocha M, de Mello MT, et al. Randomized controlled trial to evaluate the impact of aerobic exercise on visceral fat in overweight chronic kidney disease patients. Nephrol Dial Transplant 2014;29(4):857-64.

4.            Stasiulis A, Mockiene A, Vizbaraite D, Mockus P. Aerobic exercise-induced changes in body composition and blood lipids in young women. Medicina (Kaunas) 2010;46(2):129-34.

5.            Kwon HR, Min KW, Ahn HJ, Seok HG, Koo BK, Kim HC, et al. Effects of aerobic exercise on abdominal fat, thigh muscle mass and muscle strength in type 2 diabetic subject. Korean Diabetes J 2010;34(1):23-31.

6.            Boer PH, Meeus M, Terblanche E, Rombaut L, Wandele ID, Hermans L, et al. The influence of sprint interval training on body composition, physical and metabolic fitness in adolescents and young adults with intellectual disability: a randomized controlled trial. Clin Rehabil 2014;28(3):221-31.

7.            Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring) 2013;21(11):2249-55.

8.            Sijie T, Hainai Y, Fengying Y, Jianxiong W. High intensity interval exercise training in overweight young women. J Sports Med Phys Fitness 2012;52(3):255-62.

 

Sprint on the Beach for HIIT Cardio!

Calling all athletes, what kind of surfaces are you sprinting on these days? We truly hope you are not sprinting on Running-Virginia-Beachconcrete surfaces, unless you are sprinting away from your girlfriend because you forgot it was her birthday. Otherwise sprinting on concrete is a big no no and could cause a potential injury and are tough on your joints overall.

We remember when we were kids and we used to have sprint competitions against our friends on concrete surfaces, boy those were fun until one of us took a hard spill. After thinking about that hard spill, we think other surfaces would be more optimal to sprint on. All kidding aside, one of the best surfaces to do some all out sprints or HIIT cardio is on sand. Yes, sand, as in beaches, beautiful weather, and hot babes all around. Now, we know everyone doesn’t have access to sand surfaces, but for those that do it’s time to try doing your sprints on them.

Sand surfaces are harder to walk and run on than other surfaces because the feet slip and sink, which requires the leg muscles to stabilize the feet during the application of force. We promise you will not be disappointed with how grueling and tough sprinting on sand surfaces are. Oh and your joints will thank you in the long run, along with the rest of your body.

Where’s the proof in all this mumbo jumbo sprinting in sand talk, you ask? Before we discuss the study, we would like to give researcher Chris Beardsley a round of applause for discovering this study. A 2012 study conducted in the Journal of Science and Medicine in Sport, tested the biomechanics and predicted energetics of sprinting on sand surfaces. Previous researchers have observed that the energy cost of walking on sand is 1.8 – 2.7 times that of walking on from ground, while the energy cost of running on sand is 1.2– 1.6 times that of running on from ground. If you think about it, that is a pretty significant difference and could really be beneficial in everyone’s favor, especially athletes training in pre-season or possibly for rehabilitation purposes.

So what did the researcher’s do?

running-surfaces-pros-and-consThe researchers wanted to compare short sprints with or without changes in direction on sand, grass, and artificial turf. So they recruited 29 male professional soccer players

(7 defenders, 15 mid- fielders and 7 forwards). After a standardized 12-minute warm up, the researchers asked the athletes to perform a 12m maximum speed sprint and a 24m maximum speed shuttle sprint (with a 180 degree change of direction). The athletes performed both of these sprints on sand, grass, and artificial turf. Not concrete surfaces as we mentioned earlier, could be disadvantageous.

So what happened?

Measurement decreases on sand: The researchers observed significant decreases in average speed, maximum speed, average acceleration, maximum acceleration, average stride length, flight time, mechanical power, and stiffness on sand than on grass or artificial turf.

Measurement increases on sand:  The researchers also noted that average energy cost, average metabolic power, and contact time were highest during sprinting on sand.

Changes in efficiency in sand: The researchers found that efficiency values (i.e., the ratio between mechanical power and metabolic power) of the sprints were 0.17 on natural grass and artificial turf, while the ratio was only 0.12 for sand.

Similarity in stride frequency across all surfaces: The researchers were surprised by the lack of variation in stride frequency between the various surfaces.

So what did the researchers conclude in all of this?

This can’t be a study if there’s no conclusion right? Well, the researchers concluded that running on sand could be a useful tool for the following: training, injury prevention, and recovery. Pretty darn good benefits if you ask us. The main reasons they came to this conclusion was due to the stiffness values and how maximal speeds become lower on sand surfaces. Not to mention as we said earlier, this could serve your body well over time from possible joint issues or even the famous “shin splints” which can be pretty painful. The researchers also noted that “it is possible to carry out maximal intensity sprints on sand without reaching maximum speed, with lower stiffness, while also maintaining the same stride frequency but by reducing stride length, which represent less injury risk.” At the end of the day we are pretty sure everyone wants to stay injury free in order to maximize their full potential.

Wrapping this up

So we have some pretty cool data here to support the notion that sand is indeed a great and beneficial surface to do sprints on. Now, we are not saying that sprinting on grass, turf, or tracks are bad. We sprint on those surfaces all the time and have no pain what so ever. We are simply saying that sprinting on sand has its valid benefits and are very tough due to how your feet slip and sink in the sand to create the leg muscles to stabilize the feet during the application of force. Oh yes, not to mention if you have access to a beach then why the hell not take advantage of some awesome weather and do some sprints while flexing your guns and glutes. Overall you can’t go wrong with sprinting on sand, it’s great on your body, great for rehabilitation, great scenery, and whether you’re an athlete or not, just get out there and do some damn sprints!

References:

(1)Gaudino, Gaudino, Albertia, and Minetti, Biomechanics and predicted energetic of sprinting on sand, Journal of science and medicine in sport, 2012.

About The Authors:

Chris and Eric Martinez, CISSN, CPT, BA, also known as the “Dynamic Duo” operate a world class personal training and online training business “Dynamic Duo Training,” They’re also fitness and nutrition writers, fitness models, and coaches that love helping people reach their goals. Their philosophy is “No excuses, only solutions.”

Visit them at:

Dynamic Duo Training

Blogsite

FaceBook Page

Twitter

YouTube Channel   

6 HIIT Cardio Workouts

I-Heart-HIIT_thumb2By Chris Martinez CISSN and Eric Martinez CISSN.

These days cardio machines are everyone’s choice of conditioning. Why? Probably because you hardly break a sweat, feel no pain, and you’re able to read the latest Gossip Magazine or text message while you’re at it. Yet as much as we do advocate using cardio machines, the correct way that is, there are other effective conditioning workouts out there. We wanted to present to you 5 HIIT cardio workouts that will be fun, exhausting, true test of mental toughness, get you off the cardio machines, and most importantly beneficial to your health and body compositional changes.

Before we pop the bottles of champagne, we want to educate you on some of the energy systems that are going to be used during these workouts. There are three energy systems that you will use.

The first being the high energy phosphate system which provides energy for muscles in the initial 1 to 15 seconds of high intensity activity (1). ATP (quick burst of energy) will be activated during this system, which is great because that’s what causes the body to make metabolic changes.

The second being the Anaerobic Glycolytic System (aka the Lactic Acid energy system) which the body relies primarily on anaerobic metabolism for the energy required to perform intensive exercise of greater than 12-15 seconds and less than 3 minutes duration (2). This system will be another way to overload your muscles, as you will be firing those muscle fibers so fast, you are going to recruit the fast twitch fibers and evidently you’re going to cause muscle damage (a good thing).

The third system being the Aerobic Oxidative System  (aka the Oxygen system) which consists primarily of exercises that are performed at an intensity lower than that of the anaerobic threshold (3). Meaning that you will not get any lactic acid (burning sensation) production when you’re in this system and it will be mainly a brisk to fast pace walk or light jogs to keep your heart rate elevated.

So as you can see with all three of the energy systems above, they will all be used in these 5 workouts. Alright, enough with all this science mumbo jumbo, let’s HIIT it!

Car pushes

Yes! You heard us…Car pushes! If you have never tried car pushes then you are missing out on one of the best HIIT cardio car-pushesworkouts around. This is one of the best ways to improve cardio conditioning, leg drive and power, some upper body pressing power and build a great physique. We’ve found that our squats and leg pressing power have improved since doing these because of the overload the car puts on your legs and you have to use a tremendous amount of lower body strength, as well as upper body strength to move the car. Car pushing is very underrated for strength training and power in our opinion. The cool thing about car pushing is that there are literally hundreds of yards of empty space around somewhere near you, so all you have to do is put it in neutral, drop your head down, arms straight, get low and push with all you’ve got for 10-30 seconds. Now depending on if you’re a newbie or advanced trainee, choose the car you push wisely. If you weigh 100 pounds you probably don’t want to push a Hummer. If you’re 200 plus, you probably don’t want to push a slug bug. You get the point!

The protocol- 10 minute brisk walk or slow paced jog for warm up, 4 intervals of 10-30 second all out pushes and 3-4 minute brisk walk in between intervals, then 10 minute brisk walk to cool down.

Sled Drags

We’re sure some of you are saying what the hell are sled drags? Sled drags are very effective for the athlete, power lifter, or down-right bad ass that wants to get in tip top shape. Dragging a weighted sled by using a harness tied to your waist allows you to activate the core to work harder as well as your glutes and hams. The harness also forces you to keep a straight, stiff spine throughout the exercise, regardless of how tired you get. Rounding the back at anytime will immediately look and feel very awkward, giving instant feedback to straighten out or stop and rest. The great thing about sled dragging is it can have a carryover effect to many things, such as: Football, athletes learning how to explode when moving. Powerlifting, sled dragging strengthens your posterior chain and that can help with deadlifting. Track and field, overloading your waist and sprinting with weights can lead to more explosive movements when you train without them.  If you aren’t sled dragging, then you are missing out on superior strength gains and conditioning. If you decide to sled drag, a good rule of thumb is “you’ve got too much weight when you’re walking like you’re drunk.”-Louie Simmons

The Protocol- 10 minute brisk walk or slow paced jog for warm up, 5 intervals of 10-30 seconds all out sled dragging and 2-3 minute brisk walk in between intervals, then 10 minutes brisk walk to cool down.

Heavy Rope Training-

Heavy rope training was originally developed for specific combat sports such as football and Mixed Martial Arts; it is now becoming very popular for conditioning work and HIIT cardio. If you’re looking for a new twist to your fitness routine or if you’re one of those that complain about other HIIT cardio workouts being too demanding on your legs the day after a leg session, then this is what you’re looking for. Along with increasing your strength, power, and endurance, the constant motion of rope battling will give you a hell of a workout. Some common movements include waves, slams, throws, spirals, and whips.  All involve swinging your arms up and down (or side to side) for timed intervals. With each of these exercises, you want to create a solid base by planting your feet in a shoulder width stance and stabilizing your core, think of an athletic stance. You’ll quickly discover that these exercises engage not just your arms and shoulders, but your whole body.

The Protocol- 5 minute moderate jump rope for warm up, 3-5 sets of 10-30 second intervals (waves, slams, throws, spirals, whips) and 45-60 seconds of rest in between intervals, then 5 minutes of moderate jump rope to cool down.

Kettlebell Swings

Believe it or not but kettlebells are starting to be increasingly popular. Specifically kettlebell swings have become a great HIIT cardio workout to activate your glutes and hamstrings. A study in the Journal of Strength and Conditioning found as the movement progressed from the bottom of the swing to the top of the swing, back muscle activation peaked first at around 50% of MVC (maximal voluntary contraction), followed by abdominal/oblique activation at around 20-30% of MVC, followed by gluteal muscle activation at around 75% of MVC (4). As you can see kettlebell swings stimulate your glutes, strengthen your back muscles, engage your core muscles and help strengthen the hip and knees. Muscle activation ramps up during a half-second interval in the concentric phase (top of the swing) and then transitions to almost complete relaxation during much of the eccentric phase (coming down with the swing) (5).  So every time you are swinging that kettlebell you are firing muscle fibers and this could lead to overall muscle growth. If you’ve never tried kettlebells for HIIT then your booty and hamies are in for a long day! Make sure to be wise when you choose the weight, you aren’t going for a 1 rep max, pick a comfortable weight that you can swing and use good form to really activate all the muscles.

The Protocol- 5 minute moderate jump rope for warm up or 10 minute brisk walk/jog, 5 sets of 10-30 second intervals (all out swings) and 45-60 seconds of rest in between intervals, then 5 minutes of moderate jump rope or 10 minute brisk walk/jog to cool down.

Sprints

Last but not least how can we leave out good old sprints that have been tried and true for the longest time.  Just look at sprinters legs compared to a long distance runners legs. Obviously the sprinter has more muscle mass on their legs because they’re activating fast twitch muscle fibers and creating muscle damage which leads to muscle growth. If you don’t believe us, go do sprints and you’ll see how sore you are the next day, it’ll feel almost the same as if you did an intense leg workout and that’s because you activated and broke down those muscle fibers. A recent study by Metcalfe et al. shows if you perform what Metcalfe and colleagues call the “minimal amount of exercise for improving metabolic health” a 3x per week 10min exercise regimen with no more than two (yes, I said it only 2 times!) all-out sprints, everything you’ve got, you will make changes to your metabolic rate (6). This 6 week exercise program was compared to the results of a 10 month intervention program in subjects who exercised 3x a week for 40min (steady state). Metcalfe’s study goes to show that it’s a more efficient way to burn fat by doing 3x per week for 10 min with only 2 all out sprint intervals because the steady state endurance study was not only four times more time-consuming, but it also failed to improve the glucose tolerance test and produced no improvements in insulin sensitivity.

The Protocol- 10 minute brisk walk, 5 sets of 10-30 second intervals (all out, everything you’ve got) and 1-4 minutes of rest in between intervals, then 10 minute brisk walk to cool down.

Bonus Workout

Here’s a HIIT workout you can do after your boss was on your ass all day or if you have one of those days when you feel a big weight on your shoulders…Hit the heavy bag! Hitting a punching bag is a great upper body workout and tailors well for those that have lower body injuries or limitations. One recommendation we will make is to not do a heavy upper body workout following this workout or the day after. Make sure to have an off day or lower body day. Your shoulders and arms will feel like you got in a bar fight with Mike Tyson after this workout.

The Protocol- 10 jump rope for warm up, 5 rounds of 10-30 second all out, everything you’ve got, beating the crap out of that bag and 2-4 minutes of jump roping in between rounds, then 10 minute brisk walk to cool down.

Wrapping it up

Now don’t get all bent out of shape after this, but you must understand the pros and cons of doing HIIT cardio workouts. They should be used as a tool and not be overused. We wouldn’t recommend more than 3-4 HIIT cardio workouts a week and we would definitely not do them after a high intensity leg workout day. Also, you’re probably wondering why we keep saying 10-30 seconds of intervals and that’s because everyone’s AT (anaerobic threshold) is different. You have to build your tolerance and get conditioned for these types of workouts and the more you do it and push yourselves, the more your AT will improve. With that in mind, we are all different and respond differently to certain things. So experiment yourself and see what you like best and what works best for you. If you want to go by time or yards do whatever feels best for you. Start with 10 second intervals and see if you can eventually get to 30 seconds. Just don’t overdo it or take that risk of injuring yourself. Now that you have these 5 workouts in your gym bag of tricks… go HIIT it!

ABOUT THE AUTHORS

Eric and Chris Martinez are identical twin brothers that are known as the Dynamic Duo. They are CISSN certified for nutrition consulting and AFFA certified for personal training, fitness and nutrition writers for SimplyShredded.com, BroScience.com, MachineMuscle.com & DirectlyFitness.com, fitness models, and founders of Dynamic Duo Training- an up and coming world class website that provides customized training protocols, customized nutrition plans, motivational coaching, educational programs, and a carved path to live a dynamic lifestyle

References:

(1)   Hultman E, Bergstrom J, Anderson NM. Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin lab Invest. 1967.
(2)   Wilmore JH, Costill DL (eds). Physiology of sport and exercise  3rd edition. : Human Kinetics
(3)   Wells GD, Selvadurai H, Tein I. Bioenergetic provision of energy for muscular activity. Paediatric Respitory reviews. 2009.
(4)   McGill, SM. Marshall, LW. Kettlebell swing, snatch, and bottoms-up carry: back and hip muscle activation, motion, and low back loads. J strength Cond Res. 2012. Jan 26
(5)   Contreras, Brett
(6)    Metcalfe et al. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. European J applied Physio. 2011.

 

HIIT vs LISS – Which Cardio Kicks Better Tail?

cardio1By Chris and Eric Martinez.

Why is it that cardio is always the hot topic of fitness discussion and seems to be the fix all solution to burning fat? As we have all learned and I have written about in the past that cardio is not the fix all solution when it comes to body compositional changes anymore. New times have rolled in and we have tons of research studies proving that weight lifting is far more superior for fat loss and body compositional changes. But, even though we have these new findings, people still don’t get it and people still want to sit on the bikes reading magazines about Kim Kardashian’s divorce for hours and hours. Do as you please, but I know I’m one of those types of people that want to get the most bang for their buck when it comes to training. This leads me to write about what is the right type of cardio for you? I will be doing a comparison on HIIT cardio V.s LISS cardio, since these two forms of cardio are used the most. By the end of this article you will have a really good idea of what kind of cardio is right for your body and how to effectively use it.

What in the world do these crazy acronyms HIIT and LISS mean? HIIT stands for High intensity interval training, which consists of short sprint intervals coupled with low-moderate intensity work. An example of this would be a 30 second sprint followed by a 4 minute steady pace walk to cool down and bring your heart rate back to normal and then repeating it. LISS stands for Low intensity steady state cardio, which consists of purely low-moderate intensity work. An example of this would be walking on the treadmill or riding the bike and being able to hold a conversation (we tend to see a lot of this at gyms). Now that you have a basic understanding of the two forms, let’s dive into some more detailed stuff.

Why testing the lactate threshold (LT) and anaerobic threshold (AT) is a good idea? The AT and LT are extremely powerful predictors of performance in aerobic exercise (cardio). There are 2 ways that muscle can burn glucose (blood sugars) and that is through aerobic work (with air) and anaerobic work (without air). For example, long bouts of LISS cardio is considered aerobic work and weight training or HIIT cardio can be classified as anaerobic work. The AT and LT are a great test for HIIT and LIIS cardio because it gives a great predictor of which type of work produces ATP (Adenosine Triphosphate). ATP is a quick burst of energy that we get in our muscles when we contract them (Ex: every time you do a bicep curl, you are getting a quick burst of ATP). HIIT produces better changes in exercise capacity as opposed to LISS cardio. High intensity training will hit the AT and LT, that’s what causes the body to make metabolic changes.  When you are doing LISS, you are considered below the AT and LT. A simple test is being able to hold a conversation while doing cardio. When doing HIIT you are above the AT and LT and when you are above the AT and LT you push for greater improvement in metabolism which thus leads to better fat loss over time.

How can you change your metabolism? (1) If you want to change your metabolism, you have to increase muscle mass and increase your muscle’s oxidative capacity. Your muscles have these energy producing units called ‘mitochondria’ and this is where ATP are made and fats are burned. The more mitochondria you have and the more active they are the greater oxidative capacity you will have for fat loss. HIIT increases mitochondrial capacity and you actually increase the amount of mitochondria you produce.  cardio-limits

Studies show that you get greater fat loss through high intensity training because of the increase in oxidative capacity. Whereas with LISS you’re only burning calories at that precise moment, there’s no 24 hour energy expenditure (boost in metabolism) and it hurts you down the line because your body adjusts to it and you end up needing more to lose fat. With HIIT your burning calories at the moment but you actually change the muscles metabolism and it boosts your metabolism because you increase the mitochondria density of your muscle, so you increase the muscles oxidative capacity and you really do burn more calories. What most people don’t realize is you have to put your body in an uncomfortable mode and use the max energy expenditure. It’s supposed to hurt when you’re doing HIIT and if it’s hurting, you’re in an uncomfortable mode and that means you’re doing it right.

The body is very adaptive. (2)We tend to see a lot of people doing hours and hours a week of LISS and according to calculations they should be losing pounds, but they can’t lose anything because your metabolism adjusts to low intensity exercise. It just doesn’t cut it because it’s just a calorie burn at that time, not 24 hour energy expenditure.

If you do LISS all the time, you’re basically trading calories in and calories out and you can cut these same calories through diet and still get the same effects. Ex: You burn 200 calories over 30 min of LISS, you can cut out 200 calories through carbs or fat and get the same effect as opposed to getting a 24 hour energy expenditure through HIIT cardio.

(3) A study conducted by Wilson et al. From the University of Tampa, FL, shows when you add in LISS you get a temporary boost in weight loss. Subjects lost a couple of pounds the first week and after that they lost nothing. This happened because their metabolism completely adjusted to that and that became their new set point to what they had to do just to maintain. LISS with a low calorie diet is terrible for fat loss and could cause muscle loss.

During a low calorie diet, LISS cardio is more catabolic (muscle wasting) towards muscle as opposed to HIIT cardio being much more muscle sparing. The reason being that your metabolism gets so adjusted to LISS and you constantly have to do more and more and people don’t understand when you are on a low calorie diet, it usually ends up being low carb, so once you are glycogen depleted (stored carbs in muscle), your body is going to look for energy to rely on and guess what it goes after? Protein! Once it goes after protein, then you start to see catabolism (muscle wasting).

(4) In the same study by Wilson et al. It showed that LISS caused more muscle loss than HIIT. HIIT caused more muscle retention because when you’re doing LISS (say fast paced walking) you’re not activating muscles the same way as if you were lifting weights. So when you sprint you have hip flexion, knee extension, and these are all weightlifting movements. HIIT is another way to overload the muscle. Just compare a sprinters body composition to marathon runners, more muscle mass!

So, it’s really hard to argue with this study because the point about HIIT activating hip and knee movements. Hip flexion and knee extension are the same movements when doing leg workouts. Also, by doing high intensity work you are activating muscle fibers and anytime you activate muscle fibers you are primed for growth. LISS unfortunately can’t stimulate muscle fibers the same way.

(5) In another study done by Naito et al. From Juntendo University in Japan, found that in rats, the enhancement of satellite cell pool caused by endurance training is influenced not by the duration but by the intensity of the exercise.

So, I know most of you are saying well that was done in rats, but rats are very good models for protein synthesis (making of new proteins in muscle tissue) & metabolism because they have similar responses to amino acids and their metabolism. Also, for those that don’t know about satellite cells, increasing the number of satellite cells is necessary in humans because it leads to makings of new muscle fibers and the more muscle fibers you have, the more muscle growth occurs. So, what’s interesting about this finding in this study is that when the rats performed HIIT, they got muscle stimulation and that’s because HIIT overloads the muscle. When the rats performed LISS, there was no activation in satellite cell pool. So, it shows that when it comes to cardio, the intensity matters more over the duration.

Now I know a lot of you have gotten the hint as to why HIIT cardio is more advantageous to LISS cardio for muscle retention and fat loss and it seems as if I totally bashed LISS cardio to the ground. But, keep in mind that this doesn’t mean that LISS is useless. I’m a big believer in doing both HIIT and LISS combined. Here are the following reasons why:

  • ·         You can’t do HIIT 5-6 days a week because eventually it will have a negative impact on your weight training and interfere with growth
  • ·         Many people have legitimate orthopedic, cardiac, and even psychological reasons to avoid HIIT, so LISS is their only option
  • ·         HIIT could be dangerous if not used right and could lead to injury
  • ·         HIIT and LISS on either a combined, cyclical, or rotational basis seems to be the best formula in my opinion

So to sit there and say that HIIT is hands down more superior than LISS for improvement in body composition is as bad as saying that 6 reps per set is better than 20. I’m a firm believer that both HIIT and LISS cardio have unique benefits unto themselves. I feel they both should be incorporated into your routines since each have specifically different effects. Bottom line is…Do the type of cardio that you have a personal preference for. Whichever one fires you up the most because you’ll most likely work harder at it. HIIT is quicker, proves to be more effective for fat loss, creates metabolic changes, and helps with muscle retention but not everybody can do HIIT. LISS is safer, but takes twice as long to accomplish similar things and it still has its place for fat loss in moderate amounts, from a pure calorie burning standpoint (meaning only to burn calories & not make changes to your metabolism).

My intentions weren’t to favor one form of cardio and bash the other, even though it sounded like that. My intent was to educate and notify you that times have changed and science is proving some good stuff with HIIT cardio. But at the end of the day it’s up to you on what kind of cardio suits you best. Hopefully, after reading this article you should have a really good idea of what kind of cardio is right for you and how to effectively use it. If you’re still confused… JUST DO IT!

References:

(1, 2) Layne E. Norton

(3, 4) Wilson, et al. Concurrent Training: A Meta Analysis Examining Interference of Aerobic and Resistance Exercise. University of Tampa, FL. J Strength Conditioning.

(5) Naito, et al. Satellite cell pool enhancement in rat plantaris muscle by endurance training depends on intensity rather than duration. Juntendo University, Japan. Acta Physiologica. 2011 Oct.

BIOs

Eric & Chris Martinez

Founders, Dynamic Duo Training

www.dynamicduotraining.com

Eric and Chris Martinez are identical twin brothers that are nationally known as the Dynamic Duo, nutrition and training coaches, fitness and nutrition writers, fitness models, and founders of Dynamic Duo Training- an up and coming world class website that provides customized training protocols, customized nutrition plans, motivational coaching, educational programs, and a carved path to live a dynamic lifestyle. 

 

Eric and Chris Martinez have been featured in:

  • ·         The Jennifer Nicole Lee show (July 11’)
  • ·         The November 2006 issue of Muscle and Fitness magazine.

 

Eric and Chris Martinez have written for:

 

Eric and Chris Martinez have won:

  • ·         The Jennifer Nicole Lee Fitness Model Factory West Coast Casting Call (May 11’)